7
'/AD-MI&B 167 UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF==ETC F/6 9/2
A KEYNOTE ADDRESS CONCURRENT PROGRAMMING: (U)
JUN 78 P B HANSEN NOOO14=T77=C=0714
UNCLASSIFIED NL

‘[.l!-i."ﬂ F
END
DATE
FILMED
6 -79
= DX

1.0 & 2 fjz2
=. ia 3.2
E———— :

"ug 22
i "m_g_

b
L
—

. s
22 flis e

.

¢

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-!

B b
/5

* i e A R ' !
Cmtract@lﬂlﬁ_ﬁﬂ;j % u Ev
B (1
((‘ e |

P
o
4

7 il

A KEYNOTE ADDRESS GN‘EQNCQBBENTAngGRAmmfff/?

7’ PER BRINCﬁ/@ANSEN

e’

p—"

Computst Scisnce Department ~ DF
k

University of Southern California wy 21979
Los Angelss, Califarnia 90007 1
: s o e
C

AAOG68167

~ June 1978 Zn | BT
Abstract - This paper summarizes the first twenty years of
concurcant programming and identifiss the major development
pracas as an initial .hardware challengs followed by a software
crisis, a conceptual innovation, and language development which
in turn led ta formal understanding and hardware rsfinement,
The paper draws a parallzl bstwesn this development and the

present challenge of distributed computing.

DDC FiLE cory

Index Terms - Concurrsnt programming, hardware challenge,
i scftware erisis, concsptual innovation, language development,
8 1 formal understanding, hardware rsfinement, computer netuworks. <

Keynote address fcr the IEEE Comcuter Software & Apoplications
Conferencs, Chicago, Illinois, Ncvember 1578,

This work has been supported by the 0ffice of Naval Research
under contract NR0O48-647,

l This @ecument has [-on «poreved
i f?r public rel-cne anc sale; i
distribwt~n 5 ualimired,

v — oy

o 4 \ g M - 7D ~ ' "D
" Q " g g:% 3 ""‘) ' '
///;—/‘ 7 / L /

/

—

i e

I. INTRODUCTION

This keynote address summarizaes the highlights of the Pirst
imanty years of concurrent programming (1960-80) and takes a look
at the next twenty years (1980-2000),

A concurrent program is one that enables 2 computer to do many
things simultaneously. Concurrent programming is used to
increase computar efficisncy and to cope with environments in
which many things need attention at the same tims. Although
there are gocd economic and conceptual rasasons feor being intsrestad
in concurrent programs thers are major difficulties in making these
praograms reliabls,

The slightest programming mistake can make a ccncurrent progran
behave in an irreproducibla, erratic mannaer that makss progranm
testihg impcssibla. Ths following describes how this prctlem was
gradually sclved by software engineers and computer scientists.
This devglopment is saen as an initial hardwars challenge
followad by a2 software crisis, a concaptual innovaticn, and
language development which in turn led to formal understancding
and hardware refinement, The paper draws a parallsl betuween this
esvolution of ideas and the pressent challenge of distributed
computing,

II, THE DEVELOPMENT CYCLE

When you look at concurrent programming on a time-scale of
decades you will sse that it went through several stages of
development each lasting about S years:

Hardwate challsnge (4985 - 60)
Software crisis (1960 - 65)
Concaptual innovation (1965 - 70)
Language development (1970 - 75)
Formal uncderstanding (1975 =)
Hardware raf inement (1980 -)

At the beginning of this period new hardware dsvelopmaents make
concurrent programming both possible and esssntial, As
programmers sxpsriment with this new idea they are gradually led
to the development of extremely complicated systems without much
of a concaptual basis to rely on., Not toco surprisingly thess
systems soon become sc unrsliabls that the phrases "scftwars
crisis™ is coined by their designers, By then tha importance of
the problem is recognized by computer scientists who start a
search for abstract concepts that will simplify the undarstanding
of cpncurrent programs. Once the essencs of the problem is
understood a notation is inventad for ths basic concepts and it
now becomes possible to define them sa precisely that thay can bs
incorporated inta nsw programming languages. This language nctation
in turn enables thsorsticians to dsvelop a mars formal understanding
of the problem, At the same time, the nsw language concepts
inspire innovative computer dasignsars.

At this point (if not sooner) new hardwars possibilities
start ancther developmsnt cycls. One must indeed agree with Alan
Perlis that "hardwars drives tha fisld,” but one must alsc add that
"abstractions maks it managzable,”

We will look at each of the stagaes that concurrent programming
went through and sse what the naxt challenge is 1ikely ta be.

III, THE .HARDWARE CHALLENGE

Around 1955 computer architecture changed drastically with the
invention of larce .maonetic core: stores and asynchronously
overating peripheral devicss. It now became possibls to write

large programs cf 10,000 - 1,C000,0C0 machine instructions. At
the same time interrupts made it possible to orite concurrent
programs that could switch a fast processor among its much slouwer
peripheral devices and make them opsrata simultaneousiy.

Trha intellectual challenge of this tachnclsgical resvalution
was formidable, For the first time programs became too large to
be understaod completely by a singlas prcgrammer, In response to

P s

this challasnge computer programmers invented the first abstract
programming languages, Fortran and Algol60, and made their
compilers soms of the best undsrstood and most reliable system
programs we know, All this happened in less than 10 years. A
most impressive achievement [1].

The capabilitiss fer simultanecus exscuticn of sesveral tasks
on ane computer did, howsver, creata a seriocus problem that tock
much longer to solve: Programming arrors could now causs a
concurrent program to behave in an erratic, time-dspendent
mannur, These errors were aextramely difficult to find since their
effect varied from one axscution to the nsxt sven whsn ths input
data remainsd the sams., It has taken tuwenty years to cope with
this praobiam of concurrency.

If you look at ccmputers from a programmer's point of visw
the main protlem is to master the caomplexity of the harduare
inngvationz that were introduced two decades agc, By comparison
mini- and microcomputers are not reveolutiscnary at all, Their
gconomic impact and the numerous passibilitiss for new
applications are far reaching, But they have not, so far, posed
new programming problems of the sams difficulty (thank heaven).

IV, THE SOFTWARE CRISIS

The slowness of peripheral devicas made asynchronous aoperation
gssential for efficient caomputer opsration, But the pitfalls of
concurrency made it equally impartant toc pressnt ths user with a
simple, sequential interface to the machine. The new system
programs that wers suppcsed to maks a concurrant computer system
bath simpls, reliable, and efficient wers callsed ocerating
systems,

Some of the early batch procsssing systems, such as Atlas (1S61)
and Exec 1I (1962), were both efficient and simple. But thesy were
not entirely reliable. In lccking tazck 2ill Lynch observed that
"several probleams remained unsolved with the Exec II cperating
system and had to be aveided bty one ad hoc means or another. The

L;..ah‘

——

problem of deadlocks was not at all understood in 1962 when the
system was designed. Aé,a result several annoying deadlocks uwere
programmed into the system” [2].

The early time-sharing systems, such as CTSS (1962) and SDC
Q-32 (1964) were also of modsst size,

Now, when faced with a new idea programmers have an irresistabls
urge to push it to its natural limits and then beyond. The next
generation of operating systems were complex beyend human
comprehension, Tha Multics system (1965) required 200 man-years
of develcpment effort, and 0S360 (1966) a staggering S0CC man-
years, Bscause of its size 0S360 became quite unreliable, In 1569
Hopkins said this: "We face a fantastic problem in big systams.
For instancs, in CS360 we have about 1000 errors in sach rslease
and this number seams ta bs rsascnably constant” [3].

At this point it had become common feor large opsrating systems
to fail daily and it was doubtful whether they were achisving
their original aim of snsuring efficient, reliable computar
oparation, There was a clear feeling at this point that it was
just not possibls to design thesa large programs without some
concsptual basis that would make them more undsrstandabls,

The importance (and the failure) of cperating systems had by
now bsccme clear to computer scientists who, lika 2ll cther
computer ussrs, were forcad to depend on thess systems in their
own caomputing centars, And so the search for abstractiecns began,

V, THE CONCEPTUAL INNOVATION

In looking back at this develspment it is clear that it was a
search for concapts that weuld make it pcssible to divide a
cancurrent precgram into smallar asynchronous madules with
time-independent behavicr,

The idea of dividing a concurrant program into sscuential

recczsses that are exescutad asynchronously was by far the mest

R — — ~z!!=:u===z!:====-qq‘

important inngvation, This idea and its implementation was
pioneered at MIT in the CTSS projsct [4].
A procsss is a program maodule that consists of a data

structurs and a ssgquence of stataments that operatas on it.

If each process anly opsratas on its own data then it will

behave in a completsly predictable mannsr each time it is

executad with the same data, Hardware protsction mechanisms can
" pravent processes from refsrring to each other's data structures

by mistake,

It now bacame. possible to perform unrelated tasks simultanecus-

& . ly without time-dependent interference. However, if processes
' share computsr rssources or cooperate on cammon tasks then they
must also be able to shara data in a ccntrolled ma2nner. Ouring
tha late sixties the main focus was ths invention of safes methods
for synchronizing processss which shars data,
3 Dijkstra's THE system (1968) is thes milestons of this era
' [5 - 7]. It introducsd most of tha concspts on which cur present
understanding of concurrent programming rests., Dijkstra noticed
that ail communicaticon amaeng processes becils down to porforming
cperations on common cata, But if several processes operate
simuyltarsocusly on the same variablss at unpredictabls spgeeds the
result will be unpredictabls since none of the processss has any
way of knowing what the: others are doing to the variables.,
Cijkstra thersfors concluded that it is sssantial to perform
the operations on cammon variables strictly cne at a time, If
one procsess is eperating on comman variables then the machine
must delay further operations on the same variables until the
present operation is finished, Oijkstra introduced the name
critical rscisn for opesrations on commen variables which taks
place ore at a time,
r Criticzal reqions anly prevent competing processses from using
common variables simultansously. But they do not help in
transnitting cata correctly from cne process tc ancther, In
looking at the problam of procsss communication, 0ijkstra began

)

by studying the simplest possible case in which timing signals
ares sent from one procsss to another, For this purpose he
invented a data typs, called a semaphors.

A signal eperatign permits a procass to transmit a timing
signal through a semaphore variable to another procsss which
receives the signal by performing a wait operation, In a
concurrent system, the programmer cannot predict the rslative
speeds of asynchronous procsssass, It is therefore impossible to
know mhether one procsss will try to send 2 signal befors another
pracass is ready to rescsive it (or vics versa), Dijkstra rsmoved
this problem by cdefining the semaphors gpsrations in such a way
that it doesn't matter in which order thsy are initiatad, If a
process tries to receive a timing sigral befors it is available,
the wait operation will simply delay the process until another
procsss sends the noxt signal, Conversely, if signals tampararily
ars bsing sent faster than thay can ba recaived, they will simply
be stored in the semaphore variable until they are needsd.

The commutativitv cf sarmaphcrs opsrations mads process
synchronization time<~indezpendent. Dijkstra then went on to shou
how critical regions and message buffers can bs implemented By
means of semaphores.

Dijkstra's multiprogramming systam alsc illustrated ths
concaptual clarity of hisrarchical structure., His system
ccnsistad of several program layers which gradually transform the
physical machine intoc a more plsasant abstract machine that
simulates several processes which share a largse, homcgenous stare
and several virtual devices, These procgram layers can bs dssigned
and stucdied one at a time,

His co-worker Habsrmann showsd that a hiesrarchical ordering of
rescurce requests and messaga communicaticn alsc can prevent
deadlocks [é].

Artound 1970 rssearchers tBagan ts invent languacs notaticns for

thess pcwerful new concapts,

VI.. LANGUAGE DEVELOPMENT

; The invention of preciss terminology and notation plays a

: ma jor rols not only in the scisnces but in all creative

endsavours,

E' When a programming concept is understood informally it would

: seem to be a trivial mattsr to invent a language notation for it.

‘ 8ut in practicse this is hard to do, The main problem is to

g replacs an intuitive, vague idsa m?}h a preciss, unambigucus

definition of its meaning and restrictions. The mathsmatician

= Polya was well aware of this difficulty [é]z

‘ "An important stsp in sclving a problem is to choose the

notation, It should be done carefully, The times we spend now cn

choosing the notation may well be repaid by the time we save later

by avoiding hesitation and confusion. Moreaver, choosing the

? notaticn carsfully, we have to think sharply of the elements cf

the problam which must be dencted. Thus, choosing a suitzbls

notation may contribute essentially tc uncsrstanding ths preblsm,.”
R prcgramming languags concspt must represent a caneral idea

that is used vary often, Gtherwiss, it will just increase the

camplaxity of the language 2t no apparsnt gain, The msaning and

rulss of a programming languags concept must be precisely

cefined, Otherwisse, tha concapt is meaningless to a programmer,

The concept must bs representsd by a conciss notation that makes
it easy to recognizs the elements of thes concept and their
relationships, Finally, it should be possible by simpls

techniques to obtain a secure, efficient imolementation af the
concspt, The campilar should be able to check that the rulas
coverning the use of ths concept ars satisfied, and the

prcgrammer should be able to predict the speed and size cf any
program that usses the concspt by means of psrformance measurements

of it3 implemantation,

As long as nobody studiss your prograﬁs their readability may
not seem to be much of a problem., But as soon as you writs a
description for a wider audience ths usefulness of notation that
suppresses irrelevant dstail immediately bscomes obvious., So,
although Dijkstra's THE gystem was implementad in assembly
lanquage, he found it helpful te invent a language notation for
concurrent processes in his dsscriptions [5].

The fellowing sxample of Dijkstra‘'s concurraent statament
shows two seguential statements that are executed simultanscusly:

var this, next: line _
cobagin cansume(this); input(next) coend
FroFatysaytas P o Y

Wiils one statament is consuming 2 line of text, called this,
angther statement is inputting ths next line, The concurrent
statement terminates when all the component statemsnts are
tsrminated.

In 1971 Hecars pointad out that the caoncurrent statement conly
has a predictabls effect if the statemants within it cperats on
different variables [1@]. In this example, ths consumer and the
input stataments refsr to differsnt variables (this and next).
If the procrammer by mistaks lats both statements refer to the
sams. variable the effect of the concubrent statement will be
time~dependent, _

Te prevent time-dspendent programming errors a compiler should
be ablse to recocrnizs the privats varizblss of a procasss and make
them inaccessibls to other processas, Unfartunatzly, this is

difficult to do in meore complicated examples invelving
procedures and global variables, The solution to this problam
will be described latar. :
Althougn it is essential to make scme variablss accessible to
cne procass only it is also necessary to enabla srocessas to

share othar variables to make cocoperation and communiczticn
possibles,

In 1971-72 notations were proposed for associating a shared
variable with the critical regicns that opsrate on it [10, 1{].
A shared intager ussd 2s a clock is a good exampla:

var clock: sharad integer
P P el

Processas can either increment or read this clock by statsments
of the form:

tick: region clock do clock:= (claock + 1) mod max
P P P
read(x): region clock do x:= clock
e S

The compiler checks that a shared variabls is accessed only

within critical regions. Ths computar guarantess thzat thesse

reaions ars gxecutad ons at a time without gvsrlapping.
Hoara also invsnted the beautiful concept of a conditisnzl

critical regicn which is delayed until a shared varizble

satisfiss some condition (definad by a boolean sxpression),
A 3cod example is a maessage buffer consisting of a singls line
slot and a boolean indicating whether ar naot it is full:

var buffar: shared rscocrd
P o P o &
slot: line.
full: boolean
end
P o o

The send operation is a conditionzal critical region that is
gxscuted when the buffer is empty:

send(m): region buffer when not full do
Py T A e Py
begin slot:= m; full:= trus and

The receive aperation is similar:

recaive(m): sgion buffer when full dg
begin m:= slot; full:= false end

At that time it did not ssam possible to imolement ccnditional
critical rengions efficiently cn a single prceasscr, The problem
was to limit the repeated evaluation of beolean expressions until
they become true, As a compromise between elecancs and efficiency

10

process gueuss (also called "aveats" or "conditions") asscciated
with shared variables wers proposad [11].

At that time Dijkstra suggested that the meaning of process
interactions could be furthsr clarified by combining all
cperations an a shared data structure inteo a singls progranm
module (instead of scattering them throughout the prcgramtext)[ﬁ].

In 1973 a language notation for this meniter concept was
proposed [12]. The data representation of a mssszage buffer
together with the send and recsive cparaticns on it now locked
like «lhis:

monitor buffer
Ve o oo o b)
var gslot: line; full: boclean

procedurs ssnd(m: linz)
m

when not full de

Rongn gt P

Begin siot:= m; full:= trus end
Fngsags® Ca o

procedurs reczive(var m: line)
SRS I RS L o
when full do

—

|

begin m:= slot; fPull:= falss end
P)

|

begin full:= false end
Ve d

|

The monitcr includes an initial statemant that makes the buffer
empty to begin with., In a later papsr Hoars also described the
moniter concept and illustrated it with examplss E15].

A central theme in this development was an attemct to replace
earlisr hardware protsesction mechanisms by compilation checks.
The manitor concept enables a2 cocmpiler to check that send and
recaive ars the only cperations performed an 2 message buffer,
Once the buffer monitcr has been tagstad systematically the
compiler prevents other program modules from using it
incorrectly, This tends to localizz errors in new, untestad
modules and prevent them from causing ebscurs effects in cld,

tastad modulss,

1

The slimination of exscution checks was not done just to maks
compiled programs mors eff .icient, In program enginesring,
compilation and exscution checks play tha same rolgs as _
prevantive maintsnancs and flight recorders do in aviation. Thse
lattoer only tell you why a system crashad; thes fermer prasvents
it, This distinction is essential in real-time systems that
control vital functions in socisty, Such systems must be highly
reliable before thay are put into opsratian.

Tha monitor concept sclved the problasm of centrcl
to sk2red variables, Tha earlisr problam of econtrsl
the access to privats variables was solved by dzclaring each
procass and its local variables a sgparats progrzm moduls:

precass producar

|

var next: line
cyele input(naxt); buffar,send(next) en

e o 1

}

|

gTocess consumsr
P e e

var this: lins
e

cycls buffer,rsceive(this); consume(this) and

This languags notation makes it obvious tg thz program reader
and the compiler that the variable pext only can be used wifhin
the producer process.

The first programming languags based cn proccesses and monitor
was Concurrent Pascal, It was defined and implemented in 1974
E14]. B8y the snd of 1975 Ccncurrent Fascal had bsen used tao
writs three minicomputer operating systems of 600 - 14C0 lines
each, Thae develaopment and documentation effort of each system
was only a few wsaks [15 - 16]. A latsr language Mccula (1S77)
is also basad cn ths procass and menitar concapts [ﬁ?].

These lanquage concepts had 2 drzmatic impact on the

structurs of cancurrent programs. It now became natural to build
a concurrent program ocut of medules of one page each, Sincz each
mcduls defines a2ll ths meaningful cperations en a singls data
structurs (private or shared), ths modules can be studied and

52

tastad one at a time, As a result these concurrent programs
becama more reliable than the hardware they ran on, And their
simplicity made it possible to publish the entire text of a
cancurrant program of 1300 lines [15].

It is intarssting that ssquential programmers indspsncently
wsre led to the discovery of program modules which combine data
representations and procedurss into units [18]. But although
the two developments lad to the same conclusions the motivations
were different: concurrent programmers wers graduelly lad to
mcdularity simply by thsir desire to mastar synchreonization and
prevent racing conditions. Thase problems do nat accur in
saquential programs. Sequential programmers were motivatad oy
mors abstract concarns for clarity and tha desire to make
program verificatien simplsar, |

VII, FORMAL UNDERSTANDING

Gnce vcu have a notation for a concspt it becomes possibls to
refine it further and get a mors Tormal understanding of its
prcpartiss, The impact of notation on discovery haé been
exprasssd very uwell by Susanne Langer [1§]:

"There is scmething uncanny about the pgowsr cof a happily chcsen

ideographic language; feor it often allows one to express relations

which have no names in ratural languaqe and therefore have nsver
been noticed by anyone, Symbolism, then, bBscomas an organ of
discogvery rather than mers notation.”

It is no coincidence therefore that tha davelopment of language
notation for concurrsnt programming immediately inspired
theoreticzl work on program verificaticn, Hoare's first paper
on concurrent programming (1972) ccntains axiamatic definitions
of the meaning of concurrent statemsnts and critical regions., A

later paosr by Hears (1974) defines ths effsct of cucsue manipulation

within mcnitors, The davelopment of verificatica rulcs feor

R ——

13

concurrent programs with conditional critical regions was
carried further by Owicki and Gries [20].

It remains to be seen what effect thess thesories will have
on language refinement and program rsliability, Most researchers
would agree that ocur theorstical undarstanding of concurcency is
still in its infancy. A succsssful apgpreach in this arsa will
almgst certainly requirs that computsr scientists go beyond
wsll-understood sxercises and concern themselves with model
systems of a non-trivial sizs,

VIII, HARDWARE REFINEMENT

The trend of dscrsasing hardware costs and increasing softuware
ccsts is liksly to continus dus to better production methods and
continued inflation, At the moment ths use of abstract pregramming
languages is thes only effective way of reducing softwars costs,
Unfartunatsly, present computer architsctures ds not support
abstract languages efficiently compared to machins language., A
real-tima programmer is therefors faced with a2 meaningless choica
bstwsen cast, rsliabilitv, and efficiency. The solution is quite
obvious: we must build computer architectures thet support cur
programming concepts dirsctly,

A fow years after ths inventicn of the block and procedurs
concepts of Algol60 the first stack computars appearsd. It did,
howsver, take more than a decade for this idea to be generally
adcpted by most computsr manufacturers,

A similar develocpment is now taking place in concurrent
pregramming, The microprocesscr technolcgy makes' it possibls to
build computsr architscturss that will support the procsss and
menitor concapts directly, A rzcent propcsal envisicns a computer
with 10 microprocessers. Each procsssor has a local store dsdicated
to a singlas process. The procazssors share a common store that
csntaing the monitars., This computar has no intarructs and dss
not multiplex its prccessors among severzl processes [21].

PRSv—

I would expect an increasing number of computer architectures
to be oriented towards the support of concurrent programming
lanquages for real-tims applications,

For applications that are of interest to a large number of
people it will be economical to specializs the hardware even
further, In those cases it seems very attractive to writs a
concurrent program in an abstract language that hides machine
datail, test it on an existing machine, and then derive the maost
straight-forward specializaed architecture from the procgram itself,

Lilt: tha davelopment of ocur theoretical undasrstanding the
design of new computer architectures for concurrent programming
has just startsd and will probably centinue for ancthsr deczde.

IX, THE NEXT CHALLENGE: COMPUTER NETWORKS

It has taken twenty years to design rsliable camputer systems
in which concurrent procecses share storags. And now hardware
technology kas provided another challengs: microcomputsr netwerks
in which processcrs communicate by input/output cnly (withcut any
commecn storags). This seems a natural approcach ts real-time
applications in which geocgraphically distributed functions must
bs cccrdinated,

Anyone who taoock ths word 'abstraction' ta mean 'macnine
indspendent' suddenly discovered that abstract prcgramming
lzanquages merely hide the irrelevant differences between similar
computer architectures, The procedure concept is still fundamentally
tied to tihe existencs of a common store for parameter passing. And
the pecple who developed manitors for concurrent programming alsc
took this technological assumption for grantad.

Now it may seem that the sclution to the distributed grocassing
sroblem is simpla: message pessing between processcrs connected
by cables is all that is needed, And message passina (one of the
oidast ideas in concusrant programming) we surely undaerstand very
well, Unfortunately, it is not that easy.

o ev—— popres agie Ly Ao i s

1S

What we do understand is deterministic messacs passina in which

a receiving process waits until another procsss sends a message
on a given lins., In such a system each process performs a
complaotaly pradictable transformaticn of its input to its
output, The analysis of individual processes must bs supplied
with a global analysis of terminaticn (or absence of deadlocks),
This can bs quaranteed by a hisrarchical ordering of processes
into 'masters' and 'servants',

A y2cent paper by Hoars, however, makes it clear that anas
must also include nondeterministic messaqe passing - 2 far mcre
complax prcblem 22}. An obvigus example iz a prcoccess that
functions as a buffer bstween two other prccessss, The buffer
procass cannot predict whether its environment will ask it ta

receive cr send a messace next, Conseguently, it cannot commit
itself to waiting until it receives a messags on the input line,
Fer this would make it unables to respaend tc a2 request for
sencing a message on its output line. Conversely, it canmnot
commit itself to wait until it is azskzd toc send 2 messags either,
For this would make it unablas %o recsive further messages in the
meantime thereby slocwing down the producer prccess unnecessarily,

What is needad therefore is ths ability of a prccess to delay
itself until it recsives sither a request for sending or receiving.
It must then bs able ta perform one of two acticns dagending on
what 1s was asksd to de.

The problem is further complicatsd by the finits stcrage
capacity cf a buffer process, When the buffer is full, the
prccess cannot accept further input; and when it is empty, the
process cannct deliver further output, Hcars is therefore led to
introducing a non-daterministic statement cf the form:

16

when
T

not full(buffer), input(x): put(x, buffer)

not empty(buffer), output(x): get(x, buffer)
end

Lo aad

These communicatina sequential proccesses seem somewhat
inconvenient for the programming of procasses that scheduls
other procasses. To handle this problem the concept of
distributed orccesses has been proposed [23]. It combines the
procyss and monitor concepts and enables one grocess to call a
procedure within another process when the lattar process is waiting
for some condition to ba satisfizd by its own varizbles, The
parameter passing beotween processes can be dena by a singlz input
opecration before a precess interacticn fellowed by a single cuiput
agparation aftsrwards.

The practicality of thesse recsnt proposals have not yet been
established, They have not even Leen implazmentsd z2nd are nat
understood formally, Their main value is to make it clear that
distributed computing will rsquire nem concepts.

If the history of concurrant programming is abcut to repeat
itsalf we should expect ths nmew harcdware challencgs tg lezd to z
software crisis as the tachnolocy is being usad in real-time
applications by means of ad hoc pregrzmming techniguaes. The
search for concepts, languagss, and theory will then start acain,
This will take longer than we may think, I would expect

distributed computing to be reasonably well undarstood by ths
year 20040,

ACKNOWLEDGEMENT

This work was supported by tha Qffice of Naval Research undar
contract nec. NRC4S-41S,

i oot Y.

S s ———————
.

17

REFERENCES

[f] ACM, History of programming languages conferenca, ACNM
Sioplan Notices, Vol. 13, no. 8, Aug. 1978.

2] We C. Lynch, "An operating system design for the computer
utility environment,” QOperating Systems Technigues, ed,
C. A, R, Hoare, New York, NY: Acadamic Press, 1972.

[5} Nato report on Scftware Enginasring, Rome, Italy,
Oct. 1969,

[4] 4. H. saltzer, Traffic control in a multinlexed comoutes |
_(3ystam, YAC-TR=3C, MaSSaciU3EttS LNSTIiTUTE Of IEChnoLogy,
;amurIdgs. MA, July 1966,

[5] E. W, Oijkstra, "Cocperating sequentizl prcoccz2sses,”
Programming Lannuacss, ed, F, Genyus, pp. 43-112, New Yark,
NY: Academic ~ress, 1568,

——— o

[&] s "Tha structurs of THE multiprogqramming gystem,"
Ccmaun, Ass, Comout, Mach,, vol, 11, pp. 341-346, May 1568,
[5& » "Hiararchiczal ordering of ssguential processes,”

cta Informatica, veol., 1, pp. 115=-138, 1971.

8] Re N, Habarmann, On &bz hartmonicus cogeactaticn of abstract
machines, Technological Univercisy, cindnaven, |ne
Nsthasrlands, 1567,

[9] G. Polya, How to solve it, Garden City, NY: Docubleday, 1657,

.

L1Q] Ce &, R, Hoara, "Towards a theory of paralisl prcgramming,”
Oceratine Systems Technigues, ed. C. A. R, Hozrs, New York,
NY: Acacamic rrzss, i=72,

r
L11] P. Brinch Hansen, "Structured multiprogramming," Ccmmun,
Ass, Comput, fMach.,, vol, 15, pp. 574-578, July 1572,

[12] s Operating system orincipgles. Englewood Cliffs, NJ:
Prentica-rail, July 1973,

[15] C. A, R, Hoara, "fMonitors: an operating system structuring
concept,” Cocmmun., Ass, Comput, flach., vol. 17, pp. 549-557,
Oct. 1974,

[1é] P, Brinch Hansen, "The programming language Concurrent Pazcal,"
IEEE Trans, Scftware £na., vel, SE-i, pp. 159-207, June 1973,

[15} , "The Solo ogerating systam,™ Seoltware - Practics and
xperisncs, vel, €, pp. 141-205, Apr.-June 1976,
[15] y Tha architacture &f cencurrznt orocrams, Englsweod

ClirPs, NJ: Pranticc=-rFall, July 1977,

18

[17] N, Wirth, "Modula: a programming language for modular |
multiprogramming," Software - Practice and Experience,
vel, 7, pp. 3=35, March - April 1977,

E1é] C. A, R, Hoars, "Proof of correctness of data representations,”
Acta Informatica, vol. 1, pp. 271-281, 1972,

[1§] S. K. Langsr, An introducticn to symbolic loaic. New York, NY:
Dover Publicatisns, 15487,

(Zd] S. Owicki and D, Gries, "Verifying properties of parallel
programs: an axiomatic approach,” Commun, Ass, Comout, Mach,,
vol, 19, pp. 279-288, May 1976,

[21] P. Brinch Hansen, "Multiprocesser architectures for
v>oncurrent programs,” Computer Sciagnce Department,
University o Socuthern Califaernia, Lcs Angslas, CA, Apr,
1578,

[éé] C. A, R, Hoare, "Communicating sesgusntial processes," To
appear in Commun. Acs2, Comaut, #Mach,

[53] P. Brinch Hansen, "Distributed processzes - a2 concur-ent
programming cgnecapt,” To appear in Commun, Ass, Camcut,
Mach,

Pram—

